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Abstract

The true costs of high performance computing are
currently dominated by software. Addressing these
costs requires shifting to high productivity languages
such as Matlab. The development of MatlabMPI
(www.ll.mit.edu/MatlabMPI) was an important first step
that has brought parallel messaging capabilities to the
Matlab environment, and is now widely used in the com-
munity. The ultimate goal is to move beyond basic mes-
saging (and its inherent programming complexity) to-
wards higher level parallel data structures and functions.
The pMatlab Parallel Toolbox provides these capabili-
ties, and allows any Matlab user to parallelize their pro-
gram by simply changing a few characters in their pro-
gram. The performance has been tested on both shared
and distributed memory parallel computers (e.g. Sun,
SGI, HP, IBM, Linux and MacOSX) on a variety of ap-
plications.

1 Introduction

MATLAB R
� 1 is the dominant interpreted programming

language for implementing numerical computations and
is widely used for algorithm development, simulation,
data reduction, testing and system evaluation. The pop-
ularity of Matlab is driven by the high productivity that
is achieved by users because one line of Matlab code can
typically replace ten lines of C or Fortran code. Many
Matlab programs can benefit from faster execution on
a parallel computer, but achieving this goal has been a
significant challenge (see [2] for a reveiw). MatlabMPI
[3, 4, 5] has brought parallel messaging capabilities to
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hundreds of Matlab users and is being installed in sev-
eral HPC centers.

The ultimate goal is to move beyond basic mes-
saging (and its inherent programming complexity) to-
wards higher level parallel data structures and functions.
pMatlab achieves this by combinng operator overloading
(first demonstrated in Matlab*P) with parallel maps (first
demonstrated in Lincoln’s Parallel Vector Library - PVL)
to provide implicit data parallelism and task parallelism.
In addition, pMatlab is built on top of MatlabMPI and
is a “pure” Matlab implementation which runs anywhere
Matlab runs, and on any heterogeneous combination of
computers. pMatlab allows a Matlab user to parallelize
their program by changing a few lines. For example, the
following program is a parallel implementation of a clas-
sic “corner turn” type of calculation commonly used in
signal processing

pMATLAB_Init; Ncpus=comm_vars.comm_size; % Initialize
mapX = map([1 Ncpus/2],{},[1:Ncpus/2]) % Map X
mapY = map([Ncpus/2 1],{},[Ncpus/2+1:Ncpus]) % Map Y
X = complex(rand(N,M,mapX),rand(N,M,mapX)); % Create X
Y = complex(zeros(N,M,mapY); % Create Y
coefs = ... % Local matrix of coefs.
weights = ... % Local matrix of weights.
Y(:,:) = conv2(coefs,X); % Parallel filter + corner turn.
Y(:,:) = weights*Y; % Parallel matrix multiply.
pMATLAB_Finalize; exit; % Finalize pMATLAB and exit.

The above example illustrates several powerful features
of pMatlab: independence of computation and parallel
mapping, “automatic” parallel computation, and data re-
distribution via operator overloading.

2 Performance Results

The vast majority of potential Matlab applications are
“embarrassingly” parallel and require minimal perfor-
mance out of the communication capabilities in pMat-
lab. These applications exploit coarse grain parallelism
and communicate rarely. Figure 1 shows the speedup
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obtained on a typical parallel clutter simulation. Never-
the-less, measuring the communication performance is
useful for determining which applications are most suit-
able for pMatlab. pMatlab has been run on several plat-
forms. It has been benchmarked and compared to the
performance of the underlying MatlabMPI upon which it
is built. These results indicate that the overhead of pMat-
lab is minimal (see Figure 2), the primary difference is
in the latency: 70 milliseconds for pMatlab compared to
35 millieseconds for MatlabMPI. Both pMatlab and Mat-
labMPI match the performance of native C MPI [1] for
very large messages.

These results indicate that it is possible to write effec-
tive parallel programs in Matlab with minimal modifica-
tions to the serial Matlab code. In addition, these capa-
bilities can be provided in a library that is written entirely
in Matlab. Ultimately, it is our goal to establish a unified
interface for parallel Matlab that a broad community sup-
ports. We are actively collaborating with Ohio State, UC
Santa Barbara and the MIT Laboratory for Computer Sci-
ence to provide a single Unified Parallel Matlab interface
that is supported by multiple underlying implementations
(e.g. pMatlab and Matlab*P).
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Figure 1: Clutter Simulation Speedup. Parallel perfor-
mance speedup of a radar clutter simulation on a cluster
of workstations.
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Figure 2: pMatlab vs. MatlabMPI Bandwidth. Com-
munication performance on a “Ping Pong” benchmark as
a function of message size on a Linux cluster. pMat-
lab equals underlying MatlabMPI performance at large
message sizes. Primary difference is latency (70 vs. 35
milliseconds).
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Motivation: DoD Need

• Cost
= 4 lines of DoD code

• DoD has a clear need to rapidly develop, test and deploy 
new techniques for analyzing sensor data

– Most DoD algorithm development and simulations are 
done in Matlab

– Sensor analysis systems are implemented in other 
languages

– Transformation involves years of software development, 
testing and system integration 

• MatlabMPI allows any Matlab program to 
become a high performance parallel program

• MatlabMPI allows any Matlab program to 
become a high performance parallel program
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Challenges: Why Has This Been Hard?

• Productivity
– Most users will not touch any solution that requires other 

languages (even cmex)

• Portability
– Most users will not use a solution that could potentially make 

their code non-portable in the future

• Performance
– Most users want to do very simple parallelism
– Most programs have long latencies (do not require low 

latency solutions)

C
F77

C++
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• Can build a application with a few 
parallel structures and functions

• pMatlab provides parallel arrays 
and functions

X = ones(n,mapX);
Y = zeros(n,mapY);
Y(:,:) = fft(X);

• Can build a application with a few 
parallel structures and functions

• pMatlab provides parallel arrays 
and functions

X = ones(n,mapX);
Y = zeros(n,mapY);
Y(:,:) = fft(X);

Library Layer (pMatlab)Library Layer (pMatlab)

MatlabMPI & pMatlab Software Layers

Vector/MatrixVector/Matrix CompComp TaskConduit

Application

Parallel
Library

Parallel
Hardware

Input Analysis Output

User
Interface

Hardware
Interface

Kernel LayerKernel Layer

Math (Matlab)Messaging (MatlabMPI)

• Can build a parallel library with a 
few messaging primitives

• MatlabMPI provides this 
messaging capability:

MPI_Send(dest,comm,tag,X);
X = MPI_Recv(source,comm,tag);

• Can build a parallel library with a 
few messaging primitives

• MatlabMPI provides this 
messaging capability:

MPI_Send(dest,comm,tag,X);
X = MPI_Recv(source,comm,tag);
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MatlabMPI fuctionality

• “Core Lite” Parallel computing requires eight capabilities
– MPI_Run launches a Matlab script on multiple processors
– MPI_Comm_size returns the number of processors
– MPI_Comm_rank returns the id of each processor
– MPI_Send sends Matlab variable(s) to another processor
– MPI_Recv receives Matlab variable(s) from another processor
– MPI_Init called at beginning of program
– MPI_Finalize called at end of program 

• Additional convenience functions 
– MPI_Abort kills all jobs
– MPI_Bcast broadcasts a message
– MPI_Probe returns a list of all incoming messages
– MPI_cc passes program through Matlab compiler
– MatMPI_Delete_all cleans up all files after a run
– MatMPI_Save_messages toggles deletion of messages
– MatMPI_Comm_settings user can set MatlabMPI internals
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MatlabMPI:
Point-to-point Communication

load

detect

Sender

variable Data filesave

create Lock file

variable

ReceiverShared File System

MPI_Send (dest, tag, comm, variable);

variable = MPI_Recv (source, tag, comm);

• Sender saves variable in Data file, then creates Lock file
• Receiver detects Lock file, then loads Data file
• Sender saves variable in Data file, then creates Lock file
• Receiver detects Lock file, then loads Data file

• Any messaging system can be implemented using file I/O
• File I/O provided by Matlab via load and save functions

– Takes care of complicated buffer packing/unpacking problem
– Allows basic functions to be implemented in ~250 lines of Matlab code
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Example: Basic Send and Receive

MPI_Init; % Initialize MPI.
comm = MPI_COMM_WORLD; % Create communicator.
comm_size = MPI_Comm_size(comm); % Get size.
my_rank = MPI_Comm_rank(comm); % Get rank.
source = 0; % Set source.
dest = 1; % Set destination.
tag = 1; % Set message tag.

if(comm_size == 2) % Check size.
if (my_rank == source) % If source.

data = 1:10; % Create data.
MPI_Send(dest,tag,comm,data); % Send data.

end
if (my_rank == dest) % If destination.

data=MPI_Recv(source,tag,comm); % Receive data.
end

end

MPI_Finalize; % Finalize Matlab MPI.
exit; % Exit Matlab

• Uses standard message passing techniques
• Will run anywhere Matlab runs
• Only requires a common file system

• Uses standard message passing techniques
• Will run anywhere Matlab runs
• Only requires a common file system

• Initialize
• Get processor ranks
• Initialize
• Get processor ranks

• Execute send
• Execute recieve
• Execute send
• Execute recieve

• Finalize
• Exit
• Finalize
• Exit
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pMatlab Goals

• Allow a Matlab user to write parallel programs with the least 
possible modification to their existing matlab programs

• New parallel concepts should be intuitive to matlab users
– parallel matrices and functions instead of message passing
– Matlab*P interface

• Support the types of parallelism we see in our applications
– data parallelism (distributed matrices)
– task parallelism (distributed functions)
– pipeline parallelism (conduits)

• Provide a single API that potentially a wide number of organizations 
could implement (e.g. Mathworks or others)

– unified syntax on all platforms

• Provide a unified API that can be implemented in multiple ways,
– Matlab*P implementation
– Multimatlab
– matlab-all-the-way-down implementation
– unified hybrid implementation (desired)
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Structure of pMatlab Programs

pMATLAB_Init;

pMATLAB_Finalize;

Initialize globals

Clear globals

mapX = map([1 N/2],{},[1:N/2]);

mapY = map([N/2 1],{},[N/2+1:N]);

X = ones(n, mapX);

Y = zeros(n, mapY);

Y(:,:) = fft(X);

Map to sets of 
processors

Distributed 
matices

Parallel FFT and 
“Corner Turn” 
Redistribution

• Can parallelize code by changing a few lines
• Built on top of MatlabMPI (pure Matlab)
• Moving towards Matlab*P interface

• Can parallelize code by changing a few lines
• Built on top of MatlabMPI (pure Matlab)
• Moving towards Matlab*P interface
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pMatlab Library Functionality

• “Core Lite” Provides distributed array storage class (up to 4D)
– Supports reference and assignment on a variety of 

distributions:
 Block, Cyclic, Block-Cyclic, Block-Overlap

Status: Available

• “Core” Overloads most array math functions
– good parallel implementations for certain mappings

Status: In Development

• “Core Plus” Overloads entire Matlab library
– Supports distributed cell arrays
– Provides best performance for every mapping

Status: Research
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• MatlabMPI
• pMatlab

Outline

• Introduction

• Approach

• Performance Results

• Future Work and Summary



MIT Lincoln Laboratory
Slide-14

Parallel Matlab

MatlabMPI vs MPI bandwidth

• Bandwidth matches native C MPI at large message size
• Primary difference is latency (35 milliseconds vs. 30 microseconds)
• Bandwidth matches native C MPI at large message size
• Primary difference is latency (35 milliseconds vs. 30 microseconds)
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MatlabMPI bandwidth scalability
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Linux w/Gigabit Ethernet

16 Processors

2 Processors

• Bandwidth scales to multiple processors
• Cross mounting eliminates bottlenecks
• Bandwidth scales to multiple processors
• Cross mounting eliminates bottlenecks
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MatlabMPI on WindowsXP
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MatlabMPI Image Filtering Performance

Parallel performance
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• Achieved “classic” super-linear speedup on fixed problem
• Achieved speedup of ~300 on 304 processors on scaled problem
• Achieved “classic” super-linear speedup on fixed problem
• Achieved speedup of ~300 on 304 processors on scaled problem
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Contextual vision Text Processing Image Segmentation

“Cognitive” Algorithms

• Challenge: applications requiring vast data; real-time; large memory
• Approach: test parallel processing feasibility using MatlabMPI software
• Results: algorithms rich in parallelism; significant acceleration achieved with 

minimal (100x less) programmer effort

Image Face Map

Torralba (AI Lab) / Kepner (Lincoln)

Words

S
en

te
nc

es

Murphy (AI Lab) / Kepner (Lincoln)

Observed
Recovered

Murphy (AI Lab) / Kepner (Lincoln)

Application Algorithm CPUs / Speedup / Effort
Contextual vision Statistical object detection 16    /     9.4x / 3 hrs
Text processing Expectation maximization 14   / 9.7x / 8 hrs
Image segment. Belief propagation 12 /  8x - x / 4 hrs°

Coarse Grained
Image Parallel

(Static Client Server)

Medium Grained
Sentence Parallel

(Block Cyclic Dynamic Client Server)

Fine Grained
Pixel Parallel

(Block Nearest Neighnor Overlap)
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Current MatlabMPI deployment

• Lincoln Signal processing (7.8 on 8 cpus, 9.4 on 8 duals)

• Lincoln Radar simulation (7.5 on 8 cpus, 11.5 on 8 duals)

• Lincoln Hyperspectral Imaging (~3 on 3 cpus)

• MIT LCS Beowulf (11 Gflops on 9 duals)

• MIT AI Lab Machine Vision

• OSU EM Simulations

• ARL SAR Image Enhancement

• Wash U Hearing Aid Simulations

• So. Ill. Benchmarking

• JHU Digital Beamforming

• ISL Radar simulation

• URI Heart modeling

• Rapidly growing MatlabMPI user base
• Web release creating hundreds of users

http://www.ll.mit.edu/MatlabMPI

• Rapidly growing MatlabMPI user base
• Web release creating hundreds of users

http://www.ll.mit.edu/MatlabMPI
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• MatlabMPI
• pMatlab

Outline

• Introduction

• Approach

• Performance Results

• Future Work and Summary
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pMatlab vs. MatlabMPI bandwidth
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• Bandwidth matches underlying MatlabMPI
• Primary difference is latency (35 milliseconds vs. 70 milliseconds)
• Bandwidth matches underlying MatlabMPI
• Primary difference is latency (35 milliseconds vs. 70 milliseconds)

Linux Cluster
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Clutter Simulation Performance

Parallel performanceFixed Problem Size (Linux Cluster)

• Achieved “classic” super-linear speedup on fixed problem
• Serial and Parallel code “identical”
• Achieved “classic” super-linear speedup on fixed problem
• Serial and Parallel code “identical”
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% Initialize
pMATLAB_Init; Ncpus=comm_vars.comm_size;

% Map X to first half and Y to second half.     
mapX=map([1 Ncpus/2],{},[1:Ncpus/2])
mapY=map([Ncpus/2 1],{},[Ncpus/2+1:Ncpus]);

% Create arrays.
X = complex(rand(N,M,mapX),rand(N,M,mapX)); 
Y = complex(zeros(N,M,mapY);

% Initialize coefficents
coefs = ...
weights = ...

% Parallel filter + corner turn.
Y(:,:) = conv2(coefs,X); 
% Parallel matrix multiply.
Y(:,:) = weights*Y;

% Finalize pMATLAB and exit.
pMATLAB_Finalize; exit;  
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Eight Stage Simulator Pipeline
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Example 
Processor 
Distribution

- all

- 6, 7
- 4, 5
- 2, 3
- 0, 1

Parallel Data Generator Parallel Signal Processor

• Goal: create simulated data and use to test signal processing
• parallelize all stages; requires 3 “corner turns”
• pMatlab allows serial and parallel code to be nearly identical
• Easy to change parallel mapping; set map=1 to get serial code

• Goal: create simulated data and use to test signal processing
• parallelize all stages; requires 3 “corner turns”
• pMatlab allows serial and parallel code to be nearly identical
• Easy to change parallel mapping; set map=1 to get serial code

Matlab Map Code
map3 = map([2 1], {}, 0:1);
map2 = map([1 2], {}, 2:3);
map1 = map([2 1], {}, 4:5);
map0 = map([1 2], {}, 6:7);
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pMatlab Code

pMATLAB_Init; SetParameters; SetMaps; %Initialize.
Xrand = 0.01*squeeze(complex(rand(Ns,Nb, map0),rand(Ns,Nb, map0)));
X0 = squeeze(complex(zeros(Ns,Nb, map0)));
X1 = squeeze(complex(zeros(Ns,Nb, map1)));
X2 = squeeze(complex(zeros(Ns,Nc, map2)));
X3 = squeeze(complex(zeros(Ns,Nc, map3)));
X4 = squeeze(complex(zeros(Ns,Nb, map3)));
...
for i_time=1:NUM_TIME                        % Loop over time steps.

X0(:,:) = Xrand; % Initialize data
for i_target=1:NUM_TARGETS
[i_s i_c] = targets(i_time,i_target,:);
X0(i_s,i_c) = 1; % Insert targets.

end
X1(:,:) = conv2(X0,pulse_shape,'same'); % Convolve and corner turn.
X2(:,:) = X1*steering_vectors; % Channelize and corner turn.
X3(:,:) = conv2(X2,kernel,'same'); % Pulse compress and corner turn.
X4(:,:) = X3*steering_vectors’; % Beamform.
[i_range,i_beam] = find(abs(X4) > DET); % Detect targets

end
pMATLAB_Finalize; % Finalize.

Required ChangeImplicitly Parallel Code
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Outline

• Introduction

• Approach

• Performance Results

• Future Work and Summary
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Peak Performance vs Effort
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MIT Lincoln Laboratory

Airborne Sensor “QuickLook” Capability

Analyst Workstation
Running Matlab

Streaming
Sensor Data

Data Files SAR
GMTI
…
(new)

RAID Disk
Recorder

28 CPU Bladed Cluster
Running pMatlab

Beam Reconstruct Performance
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pMatlab Future Work

Input

XIN
XIN

Low Pass Filter

XIN
XIN

W1
W1

FIR1FIR1 XOUT
XOUT

W2
W2

FIR2FIR2

Beamform

XIN
XIN

W3
W3

multmult XOUT
XOUT

Matched Filter

XIN
XIN

W4
W4

FFTFFT

IFFTIFFT XOUT
XOUT

1. Demonstrate in a large multi-stage framework

User
Workstation

Embedded
Multi-computer

Special
Cluster

Embedded
Board

Lincoln
GRID

3. Port pMatlab to HPEC systems

2. Incorporate Expert Knowledge into Standard Components 
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Summary

• MatlabMPI has the basic functions necessary for parallel 
programming

– Size, rank, send, receive, launch
– Enables complex applications or libraries

• Performance can match native MPI at large message sizes

• Demonstrated scaling into hundreds of processors

• pMatlab allows user’s to write very complex parallel codes
– Built on top of MatlabMPI
– Pure Matlab (runs everywhere Matlab runs)
– Performace comparable to MatlabMPI

• Working with MIT LCS, Ohio St. and UCSB to define a unified 
parallel Matlab interface
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MatlabMPI

http://www.ll.mit.edu/MatlabMPI

High Performance Embedded

Computing Workshop

http://www.ll.mit.edu/HPEC

Web Links
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